Publications

Journals and Full-Length Conference Papers

  1. V. Linders, H. Ranocha, P. Birken. Resolving Entropy Growth from Iterative Methods. BIT Numerical Mathematics, 2023. arXiv:2302.13579 [math.NA]. [bibtex]
  2. H. Ranocha, M. Schlottke-Lakemper, J. Chan, A. M. Rueda-Ramírez, A. R. Winters, F. Hindenlang, G. Gassner. Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws. ACM Transactions on Mathematical Software, 2023. arXiv:2112.10517 [cs.MS]. [bibtex]
  3. H. Ranocha, J. Schütz, E. Theodosiou. Functional-preserving predictor-corrector multiderivative schemes. Proceedings in Applied Mathematics and Mechanics, 2023. arXiv:2308.04876 [math.NA]. [bibtex]
  4. H. Ranocha. A discontinuous Galerkin discretization of elliptic problems with improved convergence properties using summation by parts operators. Journal of Computational Physics, 2023. arXiv:2302.12488 [math.NA]. [bibtex]
  5. D. I. Ketcheson, H. Ranocha. Computing with B-series. ACM Transactions on Mathematical Software, 2023. arXiv:2111.11680 [math.NA]. [bibtex]
  6. H. Ranocha, A. R. Winters, H. G. Castro, L. Dalcin, M. Schlottke-Lakemper, G. J. Gassner, M. Parsani. On error-based step size control for discontinuous Galerkin methods for compressible fluid dynamics. Communications on Applied Mathematics and Computation, 2023. arXiv:2209.07037 [math.NA]. [bibtex]
  7. D. Torlo, P. Öffner, H. Ranocha. Issues with Positivity-Preserving Patankar-type Schemes. Applied Numerical Mathematics, 2022. arXiv:2108.07347 [math.NA]. [bibtex]
  8. J. Chan, H. Ranocha, A. M. Rueda-Ramírez, G. Gassner, T. Warburton. On the entropy projection and the robustness of high order entropy stable discontinuous Galerkin schemes for under-resolved flows. Frontiers in Physics, 2022. arXiv:2203.10238 [math.NA]. [bibtex]
  9. H. Ranocha. A Note on Numerical Fluxes Conserving a Member of Harten's One-Parameter Family of Entropies for the Compressible Euler Equations. Journal of Computational Physics, 2022. arXiv:2201.03946 [math.NA]. [bibtex]
  10. R. Abgrall, P. Öffner, H. Ranocha. Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes: Application to Structure Preserving Discretization. Journal of Computational Physics, 2022. arXiv:1908.04556 [math.NA]. [bibtex]
  11. H. Ranocha, M. Schlottke-Lakemper, A. R. Winters, E. Faulhaber, J. Chan, G. Gassner. Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing. Proceedings of the JuliaCon Conferences, 2022. arXiv:2108.06476 [cs.MS]. [bibtex]
  12. S. Nüßlein, H. Ranocha, D. I. Ketcheson. Positivity-Preserving Adaptive Runge-Kutta Methods. Communications in Applied Mathematics and Computational Science, 2021. arXiv:2005.06268 [math.NA]. [bibtex]
  13. H. Ranocha, L. Dalcin, M. Parsani, David I. Ketcheson. Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics. Communications on Applied Mathematics and Computation, 2021. arXiv:2104.06836 [math.NA]. [bibtex]
  14. H. Ranocha, M. Quezada de Luna, David I. Ketcheson. On the Rate of Error Growth in Time for Numerical Solutions of Nonlinear Dispersive Wave Equations. Partial Differential Equations and Applications, 2021. arXiv:2102.07376 [math.NA]. [bibtex]
  15. H. Ranocha. SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties. Journal of Open Source Software, 2021. [bibtex]
  16. H. Ranocha, G. J. Gassner. Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes. Communications on Applied Mathematics and Computation, 2021. arXiv:2009.13139 [math.NA]. [bibtex]
  17. K. Ostaszewski, K.-H. Glassmeier, C. Goetz, P. Heinisch, P. Henri, S. A. Park, H. Ranocha, I. Richter, M. Rubin and B. Tsurutani. Steepening of magnetosonic waves in the inner coma of comet 67P/Churyumov-Gerasimenko. Annales Geophysicae, 2021. [bibtex]
  18. M. Schlottke-Lakemper, A. R. Winters, H. Ranocha, G. J. Gassner. A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. Journal of Computational Physics, 2021. arXiv:2008.10593 [math.NA]. [bibtex]
  19. P. G. LeFloch, H. Ranocha. Kinetic functions for nonclassical shocks, entropy stability, and discrete summation by parts. Journal of Scientific Computing, 2021. arXiv:2007.08780 [math.NA]. [bibtex]
  20. D. Mitsotakis, H. Ranocha, D. I. Ketcheson, E. Süli. A conservative fully-discrete numerical method for the regularized shallow water wave equations. SIAM Journal on Scientific Computing, 2021. arXiv:2009.09641 [math.NA]. [bibtex]
  21. H. Ranocha, J. Nordström. A New Class of A Stable Summation by Parts Time Integration Schemes with Strong Initial Conditions. Journal of Scientific Computing, 2021. arXiv:2003.03889 [math.NA]. [bibtex]
  22. H. Ranocha, D. Mitsotakis, D. I. Ketcheson. A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations. Communications in Computational Physics, 2021. arXiv:2006.14802 [math.NA]. [bibtex]
  23. D. Rojas, R. Boukharfane, L. Dalcin, D. C. D. R. Fernández, H. Ranocha, D. E. Keyes, M. Parsani. On the robustness and performance of entropy stable discontinuous collocation methods. Journal of Computational Physics, 2021. arXiv:1911.10966 [math.NA]. [bibtex]
  24. H. Ranocha. On Strong Stability of Explicit Runge-Kutta Methods for Nonlinear Semibounded Operators. IMA Journal of Numerical Analysis, 2020. arXiv:1811.11601 [math.NA]. [bibtex]
    A free access version of the article is available online.
  25. D. I. Ketcheson, H. Ranocha, M. Parsani, U. bin Waheed, Y. Hadjimichael. NodePy: A package for the analysis of numerical ODE solvers. Journal of Open Source Software, 2020. [bibtex]
  26. H. Ranocha, D. I. Ketcheson. Energy Stability of Explicit Runge-Kutta Methods for Nonautonomous or Nonlinear Problems. SIAM Journal on Numerical Analysis, 58:6, 3382-3405, 2020. arXiv:1909.13215 [math.NA]. [bibtex]
  27. D. I. Ketcheson, M. Parsani, Z. J. Grant, A. Ahmadia, H. Ranocha. RK-Opt: A package for the design of numerical ODE solvers. Journal of Open Source Software, 2020. [bibtex]
  28. H. Ranocha, L. Lóczi, D. I. Ketcheson. General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes. Numerische Mathematik, 2020. arXiv:2003.03012 [math.NA]. [bibtex]
    A full-text view-only version is available at https://rdcu.be/b9owi.
  29. H. Ranocha. Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-Parts Operators. International Conference on Spectral and High Order Methods (ICOSAHOM), London (United Kingdom), July 2018. [bibtex]
  30. H. Ranocha, L. Dalcin, M. Parsani. Fully-Discrete Explicit Locally Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations. Computers and Mathematics with Applications, 2020. arXiv:2003.08831 [math.NA]. [bibtex]
  31. H. Ranocha, D. I. Ketcheson. Relaxation Runge-Kutta Methods for Hamiltonian Problems. Journal of Scientific Computing, 2020. arXiv:2001.04826 [math.NA]. [bibtex]
    A full-text view-only version is available at https://rdcu.be/b5xvN.
  32. P. Öffner, J. Glaubitz, H. Ranocha. Analysis of Artificial Dissipation of Explicit and Implicit Time-Integration Methods. International Journal of Numerical Analysis and Modeling, 17.3: 332-349, 2020. arXiv:1609.02393 [math.NA]. [bibtex]
  33. H. Ranocha, M. Sayyari, L. Dalcin, M. Parsani, D. I. Ketcheson. Relaxation Runge-Kutta Methods: Fully-Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations. SIAM Journal on Scientific Computing, 42.2: A612-A638, 2020. arXiv:1905.09129 [math.NA]. [bibtex]
  34. H. Ranocha, K. Ostaszewski, P. Heinisch. Discrete Vector Calculus and Helmholtz Hodge Decomposition for Classical Finite Difference Summation by Parts Operators. Communications on Applied Mathematics and Computation, 2: 581-611, 2020. arXiv:1908.08732 [math.NA]. [bibtex]
  35. P. Öffner, H. Ranocha. Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients. Journal of Scientific Computing, 79.3: 1572-1607, 2019. arXiv:1806.02018 [math.NA]. [bibtex]
    A full-text view-only version is available at https://rdcu.be/bfNr5.
  36. H. Ranocha. Mimetic Properties of Difference Operators: Product and Chain Rules as for Functions of Bounded Variation and Entropy Stability of Second Derivatives. BIT Numerical Mathematics, 59.2: 547-563, 2019. arXiv:1805.09126 [math.NA]. [bibtex]
    A full-text view-only version is available at https://rdcu.be/baAC2.
  37. H. Ranocha. Some Notes on Summation by Parts Time Integration Methods. Results in Applied Mathematics, 1: 100004, 2019. arXiv:1901.08377 [math.NA]. [bibtex]
  38. P. Öffner, J. Glaubitz, H. Ranocha. Stability of Correction Procedure via Reconstruction With Summation-by-Parts Operators for Burgers' Equation Using a Polynomial Chaos Approach. ESAIM: Mathematical Modelling and Numerical Analysis (ESAIM: M2AN), 52.6: 2215-2245, 2019. arXiv:1703.03561 [math.NA]. [bibtex]
  39. H. Ranocha. Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations. Journal of Scientific Computing, 76(1): 216-242, 2018. arXiv:1701.02264 [math.NA]. [bibtex]
    A full-text view-only version is available at http://rdcu.be/AefL.
  40. H. Ranocha, P. Öffner. L2 Stability of Explicit Runge-Kutta Schemes. Journal of Scientific Computing, 75.2: 1040-1056, 2018. [bibtex]
    A full-text view-only version is available at http://rdcu.be/x6Rl.
  41. H. Ranocha. Generalised Summation-by-Parts Operators and Variable Coefficients. Journal of Computational Physics, 362: 20-48, 2018. arXiv:1705.10541 [math.NA]. [bibtex]
    The full-text is available at https://authors.elsevier.com/a/1Wbh-508HeRTj until 2018-04-12.
  42. H. Ranocha, J. Glaubitz, P. Öffner, T. Sonar. Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Applied Numerical Mathematics, 2018. See also arXiv:1606.00995 [math.NA] and arXiv:1606.01056 [math.NA]. [bibtex]
    The full-text is available at https://authors.elsevier.com/a/1WWcX_3rqbu4MC until 2018-03-29.
  43. H. Ranocha. Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM - International Journal on Geomathematics, 8(1): 85-133, 2017. arXiv:1609.08029 [math.NA]. [bibtex]
  44. H. Ranocha, P. Öffner, T. Sonar. Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. Journal of Computational Physics, 342: 13-28, 2017. arXiv:1511.08408 [math.NA]. [bibtex]
  45. H. Ranocha, P. Öffner, T. Sonar. Summation-by-parts operators for correction procedure via reconstruction. Journal of Computational Physics, 311: 299-328, 2016. arXiv:1511.02052 [math.NA]. [bibtex]
  46. C. Koenders, K.-H. Glassmeier, I. Richter, H. Ranocha, U. Motschmann. Dynamical features and spatial structures of the plasma interaction region of 67P/Churyumov-Gerasimenko and the solar wind. Planetary and Space Science, 105:101-116, 2015. [bibtex]

Preprints and Technical Reports

  1. J. Lampert, H. Ranocha. Structure-Preserving Numerical Methods for Two Nonlinear Systems of Dispersive Wave Equations. arXiv:2402.16669 [math.NA], 2024. [bibtex]
  2. T. Izgin, H. Ranocha. Using Bayesian Optimization to Design Time Step Size Controllers with Application to Modified Patankar-Runge-Kutta Methods. arXiv:2312.01796 [math.NA], 2023. [bibtex]
  3. S. Bleecke, H. Ranocha. Step size control for explicit relaxation Runge-Kutta methods preserving invariants. arXiv:2311.14050 [math.NA], 2023. [bibtex]
  4. H. Ranocha, A. R. Winters, M. Schlottke-Lakemper, P. Öffner, J. Glaubitz, G. J. Gassner. High-order upwind summation-by-parts methods for nonlinear conservation laws. arXiv:2311.13888 [math.NA], 2023. [bibtex]
  5. H. Ranocha, J. Schütz. Multiderivative time integration methods preserving nonlinear functionals via relaxation. arXiv:2311.03883 [math.NA], 2023. [bibtex]
  6. H. Ranocha, J. Giesselmann. Stability of step size control based on a posteriori error estimates. arXiv:2307.12677 [math.NA], 2023. [bibtex]
  7. C. Reisch, H. Ranocha. Modeling still matters: a surprising instance of catastrophic floating point errors in mathematical biology and numerical methods for ODEs. arXiv:2304.02365 [math.HO], 2023. [bibtex]
  8. V. Churavy, W. F. Godoy, C. Bauer, H. Ranocha, M. Schlottke-Lakemper, L. Räss, J. Blaschke, M. Giordano, E. Schnetter, S. Omlin, J. S. Vetter, A. Edelman. Bridging HPC Communities through the Julia Programming Language. arXiv:2211.02740 [cs.DC], 2022. [bibtex]
  9. H. Ranocha, K. Ostaszewski, P. Heinisch. Numerical Methods for the Magnetic Induction Equation with Hall Effect and Projections onto Divergence-Free Vector Fields. arXiv:1810.01397 [math.NA], 2018. [bibtex]

Theses

Talks and Conferences

  • H. Ranocha. Structure-preserving numerical methods for nonlinear dispersive wave equations. Séminaire de Calcul Scientifique et Modélisation, Université de Bordeaux (France), February 2024.
  • H. Ranocha. Adaptive and structure-preserving numerical methods. Computational Mathematics Seminar, Hasselt University (Belgium), September 2023.
  • M. Schlottke-Lakemper, H. Ranocha. Scaling Trixi.jl to more than 10,000 cores using MPI. JuliaCon 2023, MIT, Cambridge (USA), July 2023.
  • H. Ranocha. Efficient and robust numerical methods based on adaptivity and structure preservation. Seminar of Computational and Numerical Mathematics, TU Hamburg-Harburg (TUHH, Germany), July 2023.
  • H. Ranocha. Structure-preserving numerical methods for dispersive wave equations. Keynote talk in the section S18: Numerical methods for differential equations. GAMM Annual Meeting 2023, Dresden (Germany), May 2023.
  • H. Ranocha. Tutorial on Julia and Trixi.jl. Seminar on Numerical Methods for PDEs, Kassel University (Germany), May 2023.
  • H. Ranocha. Some results on stability properties of discretizations of transport equations. Applied Dynamical Systems Seminar, Hamburg University (Germany), March 2023.
  • H. Ranocha. Structure-preserving time integration methods based on relaxation. Numerical Analysis Seminar, Lund Univeristy (Sweden), February 2023.
  • H. Ranocha. Robust and efficient high-performance computational fluid dynamics enabled by modern numerical methods and technologies. MUSEN center for Mechanics, Uncertainty and Simulation in ENgineering, TU Braunschweig (Germany), November 2022.
  • M. Schlottke-Lakemper, H. Ranocha. Reproducibility as a service: collaborative scientific computing with Julia. MaRDI Workshop for Scientific Computing, Münster (Germany), October 2022.
  • Efficient and Robust Time Integration with Automatic Step Size Control for Compressible Computational Fluid Dynamics. GAMM Annual Meeting 2022, Aachen (Germany), August 2022.
  • Efficient and robust step size control for computational fluid dynamics. Workshop on efficient high-order time discretization methods for PDEs (PDETD22), Anacapri (Italy), May 2022.
  • Analysis Meets Data: Efficient Implementation and Optimized Time Integration Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics. CSE Workshop on Modeling, Simulation & Optimization of Fluid Dynamic Applications, Groß Schwansee (Germany), March 2022.
  • M. Schlottke-Lakemper, H. Ranocha. Research software development with Julia. NFDI4Ing Conference, Virtual conference of the German National Research Data Infrastructure, September 2021.
  • On stability of positivity-preserving Patankar-type time integration methods. Bound-Preserving Space and Time Discretizations for Convection-Dominated Problems, Casa Matemática Oaxaca (CMO, Mexico), August 2021.
  • M. Schlottke-Lakemper, H. Ranocha. Adaptive and extendable numerical simulations with Trixi.jl. JuliaCon, Virtual congress, July 2021.
  • Combining Analysis and Data: Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics. Applied Mathematics Seminar, University of Münster (Germany), July 2021.
  • H. Ranocha, M. Schlottke-Lakemper, A. R. Winters. Tutorial on Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs in Julia. International Conference on Spectral and High Order Methods (ICOSAHOM 2020), Virtual congress (originally scheduled in Vienna, Austria), July 2021.
  • H. Ranocha, M. Quezada de Luna, D. Mitsotakis, D. I. Ketcheson. Summation by parts methods for nonlinear dispersive wave equations. International Conference on Spectral and High Order Methods (ICOSAHOM 2020), Virtual congress (originally scheduled in Vienna, Austria), July 2021.
  • H. Ranocha, P. Öffner, R. Abgrall. Entropy Corrections and Related Methods. International Conference on Spectral and High Order Methods (ICOSAHOM 2020), Virtual congress (originally scheduled in Vienna, Austria), July 2021.
  • Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics. Seminar at the Institute for Numerical Simulation, University of Cologne (Germany), May 2021.
  • Introduction to Julia and Trixi, a numerical simulation framework for hyperbolic PDEs. Applied Mathematics Seminar, University of Münster (Germany), April 2021.
  • Fully-Discrete Entropy-Conservative and -Dissipative Methods Based on Relaxation. SIAM Conference on Computational Science and Engineering (CSE21, Virtual congress, March 2021.
  • Recent results on time integration methods for summation by parts schemes. World Congress in Computational Mechanics and ECCOMAS Congress (WCCM-ECCOMAS 2020), Virtual congress (originally scheduled in Paris, France), January 2021.
  • Structure-preserving numerical methods with applications in science and engineering. Seminar at the Institute for Numerical Simulation, University of Bonn (Germany), November 2020.
  • Physics-compatible high-order time integration methods for transport phenomena based on relaxation. Modeling and Simulation of Transport Phenomena (MoST 2020), Treis-Karden (Germany) and online, October 2020.
  • General relaxation methods for initial-value problems Online seminar "Stable and Efficient Time Integration Schemes for Conservation Laws and Related Models", organized by Philipp Öffner and me, July 2020.
  • P. Heinisch, K. Ostaszewski, H. Ranocha. Towards Green Computing: A Survey of Performance and Energy Efficiency of Different Platforms using OpenCL. Proceedings of the International Workshop on OpenCL. IWOCL '20, April 2020, Munich (Germany). New York, NY, USA: ACM, 2020. arXiv:2003.03794 [CS.PF]. [bibtex]
  • Energy and Entropy in Numerical Methods: Structure Preserving Schemes with Applications in Science and Engineering. Computer, Electrical and Mathematical Sciences and Engineering Seminar, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia), February 2020.
  • R. Abgrall, E. Mélédo, P. Öffner, H. Ranocha. Error Boundedness of Correction Procedure via Reconstruction/Flux Reconstruction and the Connection to Residual Distribution Schemes.. Hyperbolic Problems: Theory, Numerics, Applications. Ed. by A. Bressan, M. Lewicka, D. Wang, Y. Zheng. Vol. 10. AIMS on Applied Mathematics. Springfield: American Institute of Mathematical Sciences, 2020, pp. 215-222. [bibtex]
  • Energy Stability of Runge-Kutta Methods and a Relaxation Approach. Rémi Abgrall Group Internal Seminar, Zürich (Switzerland), December 2019.
  • On Strong Stability of Runge-Kutta Methods. Computer, Electrical and Mathematical Sciences and Engineering Seminar, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia), April 2019.
  • On Strong Stability of Explicit Runge-Kutta Methods for Nonlinear Problems. VII European Workshop on High Order Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM), Madrid (Spain), April 2019.
  • High-Order Methods on Summation by Parts Form for the Magnetic Induction Equation. VII European Workshop on High Order Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM), Madrid (Spain), April 2019.
  • Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-Parts Operators. International Conference on Spectral and High Order Methods (ICOSAHOM), London (United Kingdom), July 2018. [bibtex]
  • K. Ostaszewski, P. Heinisch, H. Ranocha. Advantages and Pitfalls of OpenCL in Computational Physics. Proceedings of the International Workshop on OpenCL. IWOCL '18, May 2018, Oxford (United Kingdom). New York, NY, USA: ACM, 2018, p. 10:1. [bibtex]
  • Überblick über mögliche Probleme numerischer Verfahren für Kontinuumsgleichungen. Oberseminar Institut für Geophysik und extraterrestrische Physik, TU Braunschweig (Germany), January 2018.
  • Generalised Summation-by-Parts Operators, Entropy Stability, and Split Forms. Numerical Analysis Group Internal Seminar, Oxford (United Kingdom), October 2017.
  • J. Glaubitz, P. Öffner, H. Ranocha, T. Sonar. Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators.. Theory, Numerics and Applications of Hyperbolic Problems II. Ed. by C. Klingenberg, M. Westdickenberg. Vol. 237. Springer Proceedings in Mathematics & Statistics. Cham: Springer International Publishing, 2018, pp. 363-375. [bibtex]
  • Correction Procedure via Reconstruction Using Summation-by-Parts Operators. International Conference on Hyperbolic Problems: Theory, Numerics, Applications (HYP), Aachen (Germany), August 2016.
    P. Öffner, H. Ranocha, T. Sonar. Correction Procedure via Reconstruction Using Summation-by-Parts Operators.. Theory, Numerics and Applications of Hyperbolic Problems II. Ed. by C. Klingenberg, M. Westdickenberg. Vol. 237. Springer Proceedings in Mathematics & Statistics. Cham: Springer International Publishing, 2018, pp. 491-501. [bibtex]
  • Summation-by-Parts and Correction Procedure via Reconstruction. International Conference on Spectral and High Order Methods (ICOSAHOM), Rio de Janeiro (Brazil), June 2016.
    H. Ranocha, P. Öffner, T. Sonar. Summation-by-Parts and Correction Procedure via Reconstruction.. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Ed. by M. L. Bittencourt, N. A. Dumont, J. S. Hesthaven. Vol. 119. Lecture Notes in Computational Science and Engineering. Cham: Springer, 2017, pp. 627-637. [bibtex]
  • Correction procedure via reconstruction using summation-by-parts operators. Vincent Lab Internal Seminar, Imperial College London (United Kingdom), April 2016.