H. Ranocha, L. Lóczi, D. I. Ketcheson.
General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes.
Accepted in Numerische Mathematik, 2020.
arXiv:2003.03012 [math.NA].
[bibtex]
H. Ranocha, D. I. Ketcheson.
Energy Stability of Explicit Runge-Kutta Methods for Non-autonomous or
Nonlinear Problems.
Accepted in SIAM Journal on Numerical Analysis, 2020.
arXiv:1909.13215 [math.NA].
[bibtex]
D. Rojas, R. Boukharfane, L. Dalcin, D. C. D. R. Fernández, H. Ranocha,
D. E. Keyes, M. Parsani.
On the robustness and performance of entropy stable discontinuous collocation
methods
Accepted in Journal of Computational Physics, 2020.
arXiv:1911.10966 [math.NA].
[bibtex]
P. Öffner, J. Glaubitz, H. Ranocha.
Analysis of Artificial Dissipation of Explicit and Implicit Time-Integration
Methods.
International Journal of Numerical Analysis and Modeling,
17.3: 332-349, 2020.
arXiv:1609.02393 [math.NA].
[bibtex]
D. Mitsotakis, H. Ranocha, D. I. Ketcheson, E. Süli.
A conservative fully-discrete numerical method for the regularised shallow water wave equations.
arXiv:2009.09641 [math.NA], 2020.
[bibtex]
H. Ranocha, G. J. Gassner.
Preventing pressure oscillations does not fix local linear stability issues of
entropy-based split-form high-order schemes.
arXiv:2009.13139 [math.NA], 2020.
[bibtex]
M. Schlottke-Lakemper, A. R. Winters, H. Ranocha, G. J. Gassner.
A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics.
arXiv:2008.10593 [math.NA], 2020.
[bibtex]
P. G. LeFloch, H. Ranocha.
Kinetic functions for nonclassical shocks, entropy stability, and discrete
summation by parts.
arXiv:2007.08780 [math.NA], 2020.
[bibtex]
H. Ranocha, D. Mitsotakis, D. I. Ketcheson.
A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations.
arXiv:2006.14802 [math.NA], 2020.
[bibtex]
R. Abgrall, P. Öffner, H. Ranocha.
Reinterpretation and Extension of Entropy Correction Terms for Residual
Distribution and Discontinuous Galerkin Schemes.
arXiv:1908.04556 [math.NA], 2019.
[bibtex]
H. Ranocha, K. Ostaszewski, P. Heinisch.
Numerical Methods for the Magnetic Induction Equation with Hall Effect
and Projections onto Divergence-Free Vector Fields.
arXiv:1810.01397 [math.NA], 2018.
[bibtex]
Physics-compatible high-order time integration methods for transport phenomena
based on relaxation.
Modeling and Simulation of Transport Phenomena (MoST 2020),
Treis-Karden (Germany) and online, October 2020.
General relaxation methods for initial-value problems
Online seminar "Stable and Efficient Time Integration Schemes for Conservation Laws
and Related Models",
organized by Philipp Öffner and me, July 2020.
Energy and Entropy in Numerical Methods: Structure Preserving Schemes
with Applications in Science and Engineering.
Computer, Electrical and Mathematical Sciences and Engineering Seminar,
King Abdullah University of Science and Technology (KAUST),
Thuwal (Saudi Arabia), February 2020.
Energy Stability of Runge-Kutta Methods and a Relaxation Approach.
Rémi Abgrall Group Internal Seminar,
Zürich (Switzerland), December 2019.
On Strong Stability of Runge-Kutta Methods.
Computer, Electrical and Mathematical Sciences and Engineering Seminar,
King Abdullah University of Science and Technology (KAUST),
Thuwal (Saudi Arabia), April 2019.
On Strong Stability of Explicit Runge-Kutta Methods for Nonlinear Problems.
VII European Workshop on High Order Numerical Methods for Evolutionary
PDEs: Theory and Applications (HONOM),
Madrid (Spain), April 2019.
High-Order Methods on Summation by Parts Form for the Magnetic Induction
Equation.
VII European Workshop on High Order Numerical Methods for Evolutionary
PDEs: Theory and Applications (HONOM),
Madrid (Spain), April 2019.
Überblick über mögliche Probleme numerischer Verfahren für Kontinuumsgleichungen.
Oberseminar Institut für Geophysik und extraterrestrische Physik,
TU Braunschweig (Germany), January 2018.
Generalised Summation-by-Parts Operators, Entropy Stability, and Split Forms.
Numerical Analysis Group Internal Seminar,
Oxford (United Kingdom), October 2017.
Correction Procedure via Reconstruction Using Summation-by-Parts Operators.
International Conference on Hyperbolic Problems: Theory, Numerics, Applications (HYP),
Aachen (Germany), August 2016.
P. Öffner, H. Ranocha, T. Sonar.
Correction Procedure
via Reconstruction Using Summation-by-Parts Operators..
Theory, Numerics and Applications of Hyperbolic Problems II.
Ed. by C. Klingenberg, M. Westdickenberg.
Vol. 237. Springer Proceedings in Mathematics & Statistics.
Cham: Springer International Publishing, 2018, pp. 491-501.
[bibtex]
Summation-by-Parts and Correction Procedure via Reconstruction.
International Conference on Spectral and High Order Methods (ICOSAHOM),
Rio de Janeiro (Brazil), June 2016.
H. Ranocha, P. Öffner, T. Sonar.
Summation-by-Parts and
Correction Procedure via Reconstruction..
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016.
Ed. by M. L. Bittencourt, N. A. Dumont, J. S. Hesthaven.
Vol. 119. Lecture Notes in Computational Science and Engineering.
Cham: Springer, 2017, pp. 627-637.
[bibtex]
Correction procedure via reconstruction using summation-by-parts operators.
Vincent Lab Internal Seminar,
Imperial College London (United Kingdom), April 2016.