Benchmarks
Here are some simple benchmarks. Take them with a grain of salt since they run on virtual machines in the cloud to generate the documentation automatically.
First-derivative operators
Periodic domains
Let's set up some benchmark code.
using BenchmarkTools
using LinearAlgebra, SparseArrays
using SummationByPartsOperators
BLAS.set_num_threads(1) # make sure that BLAS is serial to be fair
T = Float64
xmin, xmax = T(0), T(1)
D_SBP = periodic_derivative_operator(derivative_order=1, accuracy_order=2,
xmin=xmin, xmax=xmax, N=100)
x = grid(D_SBP)
D_sparse = sparse(D_SBP)
u = randn(eltype(D_SBP), length(x)); du = similar(u);
@show D_SBP * u ≈ D_sparse * u
function doit(D, text, du, u)
println(text)
sleep(0.1)
show(stdout, MIME"text/plain"(), @benchmark mul!($du, $D, $u))
println()
end
doit (generic function with 1 method)
First, we benchmark the implementation from SummationByPartsOperators.jl.
doit(D_SBP, "D_SBP:", du, u)
D_SBP:
BenchmarkTools.Trial: 10000 samples with 995 evaluations per sample.
Range (min … max): 28.848 ns … 61.623 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 29.603 ns ┊ GC (median): 0.00%
Time (mean ± σ): 29.872 ns ± 1.455 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃▆▇█▅▂
▂▅██████▇▅▄▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▂▁▂▂▁▂▁▁▁▁▁▁▁▁▁▂▂▂▂▂▂▂▂▂ ▃
28.8 ns Histogram: frequency by time 37.1 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
Next, we compare this to the runtime obtained using a sparse matrix representation of the derivative operator. Depending on the hardware etc., this can be an order of magnitude slower than the optimized implementation from SummationByPartsOperators.jl.
doit(D_sparse, "D_sparse:", du, u)
D_sparse:
BenchmarkTools.Trial: 10000 samples with 661 evaluations per sample.
Range (min … max): 185.794 ns … 341.337 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 200.027 ns ┊ GC (median): 0.00%
Time (mean ± σ): 200.027 ns ± 7.123 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▅█▇▄
▁▁▁▁▁▂▂▃▄▅▅▆▅▅▅▄▃▃▃▂▂▂▆█████▆▅▄▃▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁ ▂
186 ns Histogram: frequency by time 221 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
These results were obtained using the following versions.
using InteractiveUtils
versioninfo()
using Pkg
Pkg.status(["SummationByPartsOperators"],
mode=PKGMODE_MANIFEST)
Julia Version 1.6.7
Commit 3b76b25b64 (2022-07-19 15:11 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-11.0.1 (ORCJIT, generic)
Environment:
JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager
Status `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl/docs/Manifest.toml`
[9f78cca6] SummationByPartsOperators v0.5.79 `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl`
Bounded domains
We start again by setting up some benchmark code.
using BenchmarkTools
using LinearAlgebra, SparseArrays
using SummationByPartsOperators, BandedMatrices
BLAS.set_num_threads(1) # make sure that BLAS is serial to be fair
T = Float64
xmin, xmax = T(0), T(1)
D_SBP = derivative_operator(MattssonNordström2004(), derivative_order=1,
accuracy_order=6, xmin=xmin, xmax=xmax, N=10^3)
D_sparse = sparse(D_SBP)
D_banded = BandedMatrix(D_SBP)
u = randn(eltype(D_SBP), size(D_SBP, 1)); du = similar(u);
@show D_SBP * u ≈ D_sparse * u ≈ D_banded * u
function doit(D, text, du, u)
println(text)
sleep(0.1)
show(stdout, MIME"text/plain"(), @benchmark mul!($du, $D, $u))
println()
end
doit (generic function with 1 method)
First, we benchmark the implementation from SummationByPartsOperators.jl.
doit(D_SBP, "D_SBP:", du, u)
D_SBP:
BenchmarkTools.Trial: 10000 samples with 202 evaluations per sample.
Range (min … max): 386.218 ns … 706.574 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 389.545 ns ┊ GC (median): 0.00%
Time (mean ± σ): 393.320 ns ± 13.464 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▁▅▇██▆▅▄▃▂ ▁▃▃▃▂▂ ▂
███████████▆▄▆▆▇█▇▆▄▄▃▁▃▁▃▁▁▁▁▁▁▁▁▃▃▁▁▁▃▄▁▁▅▇███████▇▇▇▆▆▅▅▄▆ █
386 ns Histogram: log(frequency) by time 437 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
Again, we compare this to a representation of the derivative operator as a sparse matrix. No surprise - it is again much slower, as in periodic domains.
doit(D_sparse, "D_sparse:", du, u)
D_sparse:
BenchmarkTools.Trial: 10000 samples with 7 evaluations per sample.
Range (min … max): 4.473 μs … 9.303 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 4.511 μs ┊ GC (median): 0.00%
Time (mean ± σ): 4.561 μs ± 264.973 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▄█▇▁ ▁▁ ▁
████▅▅▆▆▅▃▄▃▃▅▄▅▆▆▅▄▃▃▁▃▁▁▄▁▃▁▁▃▁▁▁▁▁▁▃▃▃▁▁▁▁▁▁▁▁▄▅▇███▇▇▆▆ █
4.47 μs Histogram: log(frequency) by time 5.74 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
FInally, we compare it to a representation as banded matrix. Disappointingly, this is still much slower than the optimized implementation from SummationByPartsOperators.jl.
doit(D_banded, "D_banded:", du, u)
D_banded:
BenchmarkTools.Trial: 10000 samples with 5 evaluations per sample.
Range (min … max): 6.689 μs … 13.900 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 6.713 μs ┊ GC (median): 0.00%
Time (mean ± σ): 6.788 μs ± 406.230 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█▄ ▁
██▄▁▃▅▁▁▁▃▁▃▃▄▅▅▅▄▄▁▄▁▃▁▁▁▄▃▁▄▃▁▄▁▃▁▁▁▁▁▁▁▁▃▅▇███▇▇▆▆▆▅▅▅▄▅ █
6.69 μs Histogram: log(frequency) by time 8.65 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
These results were obtained using the following versions.
using InteractiveUtils
versioninfo()
using Pkg
Pkg.status(["SummationByPartsOperators", "BandedMatrices"],
mode=PKGMODE_MANIFEST)
Julia Version 1.6.7
Commit 3b76b25b64 (2022-07-19 15:11 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-11.0.1 (ORCJIT, generic)
Environment:
JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager
Status `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl/docs/Manifest.toml`
[aae01518] BandedMatrices v1.7.6
[9f78cca6] SummationByPartsOperators v0.5.79 `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl`
Dissipation operators
We follow the same structure as before. At first, we set up some benchmark code.
using BenchmarkTools
using LinearAlgebra, SparseArrays
using SummationByPartsOperators, BandedMatrices
BLAS.set_num_threads(1) # make sure that BLAS is serial to be fair
T = Float64
xmin, xmax = T(0), T(1)
D_SBP = derivative_operator(MattssonNordström2004(), derivative_order=1,
accuracy_order=6, xmin=xmin, xmax=xmax, N=10^3)
Di_SBP = dissipation_operator(MattssonSvärdNordström2004(), D_SBP)
Di_sparse = sparse(Di_SBP)
Di_banded = BandedMatrix(Di_SBP)
Di_full = Matrix(Di_SBP)
u = randn(eltype(D_SBP), size(D_SBP, 1)); du = similar(u);
@show Di_SBP * u ≈ Di_sparse * u ≈ Di_banded * u ≈ Di_full * u
function doit(D, text, du, u)
println(text)
sleep(0.1)
show(stdout, MIME"text/plain"(), @benchmark mul!($du, $D, $u))
println()
end
doit (generic function with 1 method)
At first, let us benchmark the derivative and dissipation operators implemented in SummationByPartsOperators.jl.
doit(D_SBP, "D_SBP:", du, u)
doit(Di_SBP, "Di_SBP:", du, u)
D_SBP:
BenchmarkTools.Trial: 10000 samples with 203 evaluations per sample.
Range (min … max): 385.305 ns … 623.975 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 389.054 ns ┊ GC (median): 0.00%
Time (mean ± σ): 392.710 ns ± 13.231 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▄▆██▇▆▅▄▃▂▁ ▁▃▃▃▂▁▁ ▂
█████████████▇▅▆▇█▆▆▅▅▁▅▃▁▁▁▁▁▃▃▁▁▁▃▁▁▁▁▃▃▃▁▃▅▇█████████▆▆▆▆▅ █
385 ns Histogram: log(frequency) by time 434 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
Di_SBP:
BenchmarkTools.Trial: 10000 samples with 10 evaluations per sample.
Range (min … max): 1.014 μs … 3.045 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 1.022 μs ┊ GC (median): 0.00%
Time (mean ± σ): 1.033 μs ± 93.334 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█
█▄▂▁▂▁▂▂▂▁▁▂▁▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂ ▂
1.01 μs Histogram: frequency by time 1.74 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
Next, we compare the results to sparse matrix representations. It will not come as a surprise that these are again much (around an order of magnitude) slower.
doit(Di_sparse, "Di_sparse:", du, u)
doit(Di_banded, "Di_banded:", du, u)
Di_sparse:
BenchmarkTools.Trial: 10000 samples with 6 evaluations per sample.
Range (min … max): 5.153 μs … 14.037 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 5.231 μs ┊ GC (median): 0.00%
Time (mean ± σ): 5.290 μs ± 312.523 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃▇██▇▅ ▁▁▁ ▂
███████▅▅▅▃▅▅▁▄▅▆▄▅▄▆▄▁▄▃▁▁▁▃▃▁▃▃▁▁▃▃▄▁▃▁▃▁▄▃▃▄▃▅▄▆██████▇▅ █
5.15 μs Histogram: log(frequency) by time 6.63 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
Di_banded:
BenchmarkTools.Trial: 10000 samples with 5 evaluations per sample.
Range (min … max): 6.216 μs … 17.503 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 6.240 μs ┊ GC (median): 0.00%
Time (mean ± σ): 6.318 μs ± 413.207 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█ ▂ ▁ ▁
██▄▄▄█▅▃▁▁▁▃▅▅▄▄▁▄▃▇█▁▃▁▅▁▁▄▁▄▄▁▃▁▃▁▃▁▁▁▁▃▆██▇▆▆▅▆▆▅▇▆▆▆▅▅▅ █
6.22 μs Histogram: log(frequency) by time 8.18 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
Finally, let's benchmark the same computation if a full (dense) matrix is used to represent the derivative operator. This is obviously a bad idea but 🤷
doit(Di_full, "Di_full:", du, u)
Di_full:
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 136.906 μs … 332.263 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 155.421 μs ┊ GC (median): 0.00%
Time (mean ± σ): 156.552 μs ± 8.587 μs ┊ GC (mean ± σ): 0.00% ± 0.00%
▂▇█▅
▂▄▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂▂▃▆█████▄▂▂▂▂▂▂▂▃▄▅▄▃▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▂
137 μs Histogram: frequency by time 183 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
These results were obtained using the following versions.
using InteractiveUtils
versioninfo()
using Pkg
Pkg.status(["SummationByPartsOperators", "BandedMatrices"],
mode=PKGMODE_MANIFEST)
Julia Version 1.6.7
Commit 3b76b25b64 (2022-07-19 15:11 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-11.0.1 (ORCJIT, generic)
Environment:
JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager
Status `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl/docs/Manifest.toml`
[aae01518] BandedMatrices v1.7.6
[9f78cca6] SummationByPartsOperators v0.5.79 `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl`
Structure-of-Arrays (SoA) and Array-of-Structures (AoS)
SummationByPartsOperators.jl tries to provide efficient support of
StaticVector
s from StaticArrays.jl- StructArrays.jl
To demonstrate this, let us set up some benchmark code.
using BenchmarkTools
using StaticArrays, StructArrays
using LinearAlgebra, SparseArrays
using SummationByPartsOperators
BLAS.set_num_threads(1) # make sure that BLAS is serial to be fair
struct Vec5{T} <: FieldVector{5,T}
x1::T
x2::T
x3::T
x4::T
x5::T
end
# Apply `mul!` to each component of a plain array of structures one after another
function mul_aos!(du, D, u, args...)
for i in 1:size(du, 1)
mul!(view(du, i, :), D, view(u, i, :), args...)
end
end
T = Float64
xmin, xmax = T(0), T(1)
D_SBP = derivative_operator(MattssonNordström2004(), derivative_order=1,
accuracy_order=4, xmin=xmin, xmax=xmax, N=101)
D_sparse = sparse(D_SBP)
D_full = Matrix(D_SBP)
101×101 Matrix{Float64}:
-141.176 173.529 -23.5294 … 0.0 0.0 0.0
-50.0 0.0 50.0 0.0 0.0 0.0
9.30233 -68.6047 0.0 0.0 0.0 0.0
3.06122 0.0 -60.2041 0.0 0.0 0.0
0.0 0.0 8.33333 0.0 0.0 0.0
0.0 0.0 0.0 … 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
⋮ ⋱ ⋮
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 … 0.0 0.0 0.0
0.0 0.0 0.0 -8.33333 0.0 0.0
0.0 0.0 0.0 60.2041 0.0 -3.06122
0.0 0.0 0.0 0.0 68.6047 -9.30233
0.0 0.0 0.0 -50.0 0.0 50.0
0.0 0.0 0.0 … 23.5294 -173.529 141.176
At first, we benchmark the application of the operators implemented in SummationByPartsOperators.jl and their representations as sparse and dense matrices in the scalar case. As before, the sparse matrix representation is around an order of magnitude slower and the dense matrix representation is far off.
println("Scalar case")
u = randn(T, size(D_SBP, 1)); du = similar(u)
println("D_SBP")
show(stdout, MIME"text/plain"(), @benchmark mul!($du, $D_SBP, $u))
println("\nD_sparse")
show(stdout, MIME"text/plain"(), @benchmark mul!($du, $D_sparse, $u))
println("\nD_full")
show(stdout, MIME"text/plain"(), @benchmark mul!($du, $D_full, $u))
Scalar case
D_SBP
BenchmarkTools.Trial: 10000 samples with 989 evaluations per sample.
Range (min … max): 45.768 ns … 92.083 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 46.396 ns ┊ GC (median): 0.00%
Time (mean ± σ): 46.875 ns ± 1.979 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▄██▆▃▁
▄██████▆▅▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▂▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▂▂▂▂▂▃▃▂▂▂▂▂ ▃
45.8 ns Histogram: frequency by time 54.7 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
D_sparse
BenchmarkTools.Trial: 10000 samples with 233 evaluations per sample.
Range (min … max): 320.601 ns … 533.661 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 328.300 ns ┊ GC (median): 0.00%
Time (mean ± σ): 331.773 ns ± 11.622 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃▇█▇▅▄▁
▁▁▂▄█████████▆▅▄▃▃▃▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁ ▂
321 ns Histogram: frequency by time 370 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
D_full
BenchmarkTools.Trial: 10000 samples with 10 evaluations per sample.
Range (min … max): 1.720 μs … 4.920 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 1.729 μs ┊ GC (median): 0.00%
Time (mean ± σ): 1.751 μs ± 132.154 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█▆ ▁
██▅▃▄▁▆▅▁▁▁▁▄▁▄▃▄▄▅▄▅▃▃▄▁▁▁▁▁▁▁▄▁▁▁▄▁▃▁▃▃▃▅▁▁▁▁▁▁▃▃█▄▁▁▄▆█▇ █
1.72 μs Histogram: log(frequency) by time 2.49 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
Next, we use a plain array of structures (AoS) in the form of a two-dimensional array and our custom mul_aos!
implementation that loops over each component, using mul!
on view
s. Here, the differences between the timings are less pronounced.
println("Plain Array of Structures")
u_aos_plain = randn(T, 5, size(D_SBP, 1)); du_aos_plain = similar(u_aos_plain)
println("D_SBP")
show(stdout, MIME"text/plain"(), @benchmark mul_aos!($du_aos_plain, $D_SBP, $u_aos_plain))
println("\nD_sparse")
show(stdout, MIME"text/plain"(), @benchmark mul_aos!($du_aos_plain, $D_sparse, $u_aos_plain))
println("\nD_full")
show(stdout, MIME"text/plain"(), @benchmark mul_aos!($du_aos_plain, $D_full, $u_aos_plain))
Plain Array of Structures
D_SBP
BenchmarkTools.Trial: 10000 samples with 10 evaluations per sample.
Range (min … max): 1.311 μs … 3.463 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 1.321 μs ┊ GC (median): 0.00%
Time (mean ± σ): 1.335 μs ± 106.449 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
█▆ ▁
██▅▄▁▁▇▆▃▃▃▁▃▁▁▁▃▃▅▄▄▄▁▃▁▄▄▅▅▃▄▄▃▁▃▄▃▅▄▄▄▃▃▃▁▁▁▁▁▁▁▁▁▁▁▃▄▆▇ █
1.31 μs Histogram: log(frequency) by time 2.05 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
D_sparse
BenchmarkTools.Trial: 10000 samples with 9 evaluations per sample.
Range (min … max): 2.350 μs … 6.216 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 2.408 μs ┊ GC (median): 0.00%
Time (mean ± σ): 2.432 μs ± 155.242 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▁▅▇██▆▄▂ ▂
█████████▇▇▆▅▁▁▁▁▃▅▃▅▄▃▅▄▁▃▁▃▄▇▇▅▃▁▁▁▃▁▁▁▁▁▁▃▁▁▁▁▃▁▃▁▃▆▇███ █
2.35 μs Histogram: log(frequency) by time 3.24 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
D_full
BenchmarkTools.Trial: 10000 samples with 3 evaluations per sample.
Range (min … max): 9.044 μs … 19.266 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 9.107 μs ┊ GC (median): 0.00%
Time (mean ± σ): 9.207 μs ± 534.849 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▆█▄ ▁
███▆▃▄██▁▁▁▃▃▁▁▃▅▅▆▅▄▁▃▁▁▁▁▁▁▁▁▃▁▁▁▁▃▃▁▁▁▁▃▁▁▁▁▃▁▃▁▇▄▅▇████ █
9.04 μs Histogram: log(frequency) by time 11.7 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
Now, we use an array of structures (AoS) based on reinterpret
and standard mul!
. This is much more efficient for the implementation in SummationByPartsOperators.jl. In Julia v1.6, this is also more efficient for sparse matrices but less efficient for dense matrices (compared to the plain AoS approach with mul_aos!
above).
println("Array of Structures (reinterpreted array)")
u_aos_r = reinterpret(reshape, Vec5{T}, u_aos_plain); du_aos_r = similar(u_aos_r)
@show D_SBP * u_aos_r ≈ D_sparse * u_aos_r ≈ D_full * u_aos_r
mul!(du_aos_r, D_SBP, u_aos_r)
@show reinterpret(reshape, T, du_aos_r) ≈ du_aos_plain
println("D_SBP")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_aos_r, $D_SBP, $u_aos_r))
println("\nD_sparse")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_aos_r, $D_sparse, $u_aos_r))
println("\nD_full")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_aos_r, $D_full, $u_aos_r))
Array of Structures (reinterpreted array)
D_SBP * u_aos_r ≈ D_sparse * u_aos_r ≈ D_full * u_aos_r = true
reinterpret(reshape, T, du_aos_r) ≈ du_aos_plain = true
D_SBP
BenchmarkTools.Trial: 10000 samples with 560 evaluations per sample.
Range (min … max): 204.939 ns … 600.163 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 209.123 ns ┊ GC (median): 0.00%
Time (mean ± σ): 211.101 ns ± 6.970 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃▆██▇▆▄▃▂ ▁▃▄▄▃▂▁▁ ▂
▃▁▁▁▅██████████████▇▆▅▄▅▅▄▄▄▃▄▄▄▁▁▃▃▆█████████▆▆▆▆▅▆▅▅▅▇▄▆▅▅▄ █
205 ns Histogram: log(frequency) by time 231 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
D_sparse
BenchmarkTools.Trial: 10000 samples with 188 evaluations per sample.
Range (min … max): 536.649 ns … 800.867 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 549.383 ns ┊ GC (median): 0.00%
Time (mean ± σ): 554.288 ns ± 16.882 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▄▇█▆▄▁
▂▁▂▂▂▃▅███████▇▅▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▁▂▂▂▃▃▃▃▄▃▃▃▂▂▂▂▂▂▂▂▂▂▁▂ ▃
537 ns Histogram: frequency by time 606 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
D_full
BenchmarkTools.Trial: 10000 samples with 4 evaluations per sample.
Range (min … max): 7.354 μs … 21.823 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 7.424 μs ┊ GC (median): 0.00%
Time (mean ± σ): 7.531 μs ± 653.292 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▅█▆ ▁ ▁▁ ▁
███▇▄██▆▁▁▁▁▃▅▆▅▅▄▁▄▁▁▁▁▁▃▁▁▃▁▁▁▃▁▁▁▃▁▁▁▁▃▆▇███▆▆▅▄▃▄▄▅▃▅▃▄ █
7.35 μs Histogram: log(frequency) by time 9.88 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
Next, we still use an array of structures (AoS), but copy the data into a plain Array
instead of using the reinterpret
ed versions. There is no significant difference to the previous version in this case.
println("Array of Structures")
u_aos = Array(u_aos_r); du_aos = similar(u_aos)
@show D_SBP * u_aos ≈ D_sparse * u_aos ≈ D_full * u_aos
mul!(du_aos, D_SBP, u_aos)
@show du_aos ≈ du_aos_r
println("D_SBP")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_aos, $D_SBP, $u_aos))
println("\nD_sparse")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_aos, $D_sparse, $u_aos))
println("\nD_full")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_aos, $D_full, $u_aos))
Array of Structures
D_SBP * u_aos ≈ D_sparse * u_aos ≈ D_full * u_aos = true
du_aos ≈ du_aos_r = true
D_SBP
BenchmarkTools.Trial: 10000 samples with 565 evaluations per sample.
Range (min … max): 206.228 ns … 292.195 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 208.391 ns ┊ GC (median): 0.00%
Time (mean ± σ): 210.231 ns ± 5.077 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▅██▇▅▄▄▃▁ ▂▄▄▃▂▂ ▂
▄▅▅██████████▇▆▆▇██▇▆▅▅▄▄▁▁▄▄▃▃▁▃▃▄▄▃▃▃▁▃▃▃██████████▆▄▆▅▅▆▆▆ █
206 ns Histogram: log(frequency) by time 226 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
D_sparse
BenchmarkTools.Trial: 10000 samples with 187 evaluations per sample.
Range (min … max): 552.000 ns … 807.021 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 561.107 ns ┊ GC (median): 0.00%
Time (mean ± σ): 566.038 ns ± 15.954 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▂▆█▇▄▁
▂▂▃▃▆██████▆▄▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▂▁▂▁▂▂▂▃▃▄▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃
552 ns Histogram: frequency by time 618 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
D_full
BenchmarkTools.Trial: 10000 samples with 4 evaluations per sample.
Range (min … max): 7.316 μs … 18.886 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 7.396 μs ┊ GC (median): 0.00%
Time (mean ± σ): 7.478 μs ± 457.395 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▂▇█▅ ▁ ▁▁ ▂
████▇▃▆██▅▃▁▃▁▁▅▅▅▄▄▄▄▄▁▁▁▁▁▁▁▁▄▃▁▁▁▃▁▃▁▁▁▁▁▁▁▃▁▁▁▁▁▄▇████▇ █
7.32 μs Histogram: log(frequency) by time 9.37 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
Finally, let's look at a structure of arrays (SoA). Interestingly, this is slower than the array of structures we used above. On Julia v1.6, the sparse matrix representation performs particularly bad in this case.
println("Structure of Arrays")
u_soa = StructArray(u_aos); du_soa = similar(u_soa)
@show D_SBP * u_soa ≈ D_sparse * u_soa ≈ D_full * u_soa
mul!(du_soa, D_SBP, u_soa)
@show du_soa ≈ du_aos
println("D_SBP")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_soa, $D_SBP, $u_soa))
println("\nD_sparse")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_soa, $D_sparse, $u_soa))
println("\nD_full")
show(stdout, MIME"text/plain"(), @benchmark mul!($du_soa, $D_full, $u_soa))
Structure of Arrays
D_SBP * u_soa ≈ D_sparse * u_soa ≈ D_full * u_soa = true
du_soa ≈ du_aos = true
D_SBP
BenchmarkTools.Trial: 10000 samples with 478 evaluations per sample.
Range (min … max): 223.726 ns … 319.952 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 226.409 ns ┊ GC (median): 0.00%
Time (mean ± σ): 228.417 ns ± 6.140 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▅██▄▁
▂▃▄██████▆▄▃▃▂▂▂▂▂▂▂▂▂▂▂▁▂▁▁▁▁▂▂▂▂▂▂▁▂▂▂▃▃▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▃
224 ns Histogram: frequency by time 249 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
D_sparse
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 213.290 μs … 5.016 ms ┊ GC (min … max): 0.00% … 94.60%
Time (median): 225.563 μs ┊ GC (median): 0.00%
Time (mean ± σ): 254.551 μs ± 321.663 μs ┊ GC (mean ± σ): 9.62% ± 7.19%
▂▄▅█▇▄▄▆▅▃▂ ▁ ▂
▅████████████████▇▇▆▄▆▄▅▄▄▅▃▅▄▄▃▅▁▄▁▄▁▃▁▁▁▁▁▃▃▁▁▁▁▁▁▁▃▁▅▇▇▇▅▅ █
213 μs Histogram: log(frequency) by time 366 μs <
Memory estimate: 328.25 KiB, allocs estimate: 10504.
D_full
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 171.242 μs … 4.584 ms ┊ GC (min … max): 0.00% … 95.38%
Time (median): 180.900 μs ┊ GC (median): 0.00%
Time (mean ± σ): 208.233 μs ± 315.658 μs ┊ GC (mean ± σ): 11.56% ± 7.27%
▃▅█▇█▅▅▅▅▄▂▂▁▂▁ ▂
█████████████████▆▃▅▅▄▃▄▄▃▃▁▁▄▄▁▃▃▁▁▃▁▁▁▁▁▁▁▁▁▃▁▃▁▁▁▁▁▁▄▅██▇▅ █
171 μs Histogram: log(frequency) by time 316 μs <
Memory estimate: 328.25 KiB, allocs estimate: 10504.
These results were obtained using the following versions.
using InteractiveUtils
versioninfo()
using Pkg
Pkg.status(["SummationByPartsOperators", "StaticArrays", "StructArrays"],
mode=PKGMODE_MANIFEST)
Julia Version 1.6.7
Commit 3b76b25b64 (2022-07-19 15:11 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-11.0.1 (ORCJIT, generic)
Environment:
JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager
Status `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl/docs/Manifest.toml`
[90137ffa] StaticArrays v1.9.13
[09ab397b] StructArrays v0.6.18
[9f78cca6] SummationByPartsOperators v0.5.79 `~/work/SummationByPartsOperators.jl/SummationByPartsOperators.jl`